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Lévy walks and propagators in intermittent chaotic systems
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We study the propagator P(r,¢) for enhanced diffusion in intermittent chaotic systems represented by
a class of iterated maps. The analysis is based on the velocity model, which is characterized by motion
at a constant velocity with interruptions where sojourn times are chosen randomly but according to
power-law distributions. The velocity model reproduces excellently the map-generated motion. The re-
lationship to Lévy walks and scaling properties is discussed.
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Enhanced diffusion has been recently realized to be
quite widespread and not just a peculiar example for devi-
ations from Brownian motion [1-17]. Considerable in-
terest has been attracted by this type of diffusion, which
exhibits mean-square displacements that grow faster than
linearly with time, {r%(t)) ~t% a>1. In various model
systems, enhanced diffusion has been observed for dy-
namics characterized by regular laminar motion inter-
rupted by intermittent bursts [1,12—15]. It has been sug-
gested that such anomalous behavior can be related to
random walks in continuous time [1,15].

Enhanced diffusion shows up naturally in random-walk
frameworks, such as Lévy walks, which were introduced
in the context of dynamical systems and turbulent
diffusion [2,4-9]. Lévy walks are based on space-time
coupled memories and scale invariance of the motion
events. For particular cases, the propagator is related to
Lévy stable distributions. Lévy walks have been mainly
studied within the jump model, where particles move in-
stantaneously between sites after waiting some time at a
site. Less studied has been the case where particles move
continuously with a constant velocity between points of
halt [7]. We call the latter case the velocity model [17].

In this Brief Report we analyze enhanced diffusion
generated by iterated maps and show its one-to-one
correspondence to the velocity model. We derive asymp-
totic expressions for the propagator and compare these
results with those obtained from numerical calculations;
excellent agreement is achieved.

For the dynamical system we use the concept of circle
maps [1,15]:

Xp+1=8(x,), (M

where g(x) denotes a map and »n the number of iterations.
The map is assumed to show reflection and translational
symmetries:

g(—x)=—g(x), g(x+N)=g(x)+N . 2)

47

Here N is an integer and denotes the unit cell of the parti-
cle position. With the rules of Egs. (2) one has to define
the map only in a reduced range, and we consider the
map introduced by Geisel, Nierwetberg, and Zacherl [1]:

gx)=(1+e)x+ax*—1, 0=x=1. (3)

This map is discontinuous at the cell boundaries. Howev-
er, in order to preserve continuity within the cell we set
a=2%1—¢€/2) in Eq. (3). The quantity € is a parameter
which controls the numerical procedure in order to
prevent the iteration from staying in a laminar phase
beyond the typical time of observation. Now we deter-
mine the displacement 7 (¢) associated with a number ¢ of
iterations from

r()=x, 4, =%, , (4)

with x, chosen arbitrarily.

The map, Eq. (3), is characterized by a tangent contact
x, +1=x,t1 for coordinates close to the cell boundaries:
|x —N|—0. This gives rise to an almost laminar motion
during long-time intervals (whose lengths depend on the
injection coordinate into the laminar phase and on z).
The laminar phases are followed by intermittent bursts
typified by frequent changes of direction. This is demon-
strated in Fig. 1, where a realization of r(¢) is plotted for
1000 iteration steps and for z=3. The inset shows the
same characteristic behavior of the walk as the original
figure, i.e., long and short steps occur on all scales, a fact
exemplifying the self-affine properties of the walk.

For the probability of staying in a laminar phase,
Geisel, Nierwetberg, and Zacherl [1] calculated the fol-
lowing probability distribution:

_ 2(22—16_a)e6(2—1)1‘
l/j(t)_ [(2z—l+a/€)e(z~l)t_a/e]z/(z—l)
Nt—z/(z—l) , (5)
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FIG. 1. The random walk obtained from 1000 steps of the
iterated map, Eq. (4), for z=3 (u=2.5). The inset shows a part
of the walk on an enlarged scale.

where the right-hand side of (5) holds for 1 <<t <<e™l.
Making use of Eq. (5) and of renewal theory, Geisel,
Nierwetberg, and Zacherl [1] derived a velocity-velocity
correlation function from which they obtained the
asymptotic form of the mean-square displacement

(r%(t)). Depending on z, three regimes were found:
ballistic type, intermediate enhanced, and regular
diffusion.

Here we concentrate on the whole distribution func-
tion, the propagator P(r,t), which we calculate from the
iterated map as follows:

P(r,t)=(8(r—x,,,+tx,)) , (6)

where the average is taken over a set of initial iterations
steps {n}. Usually, in the continuous-time random-walk
(CTRW) framework, it is assumed that the first step has
the same waiting-time distribution as all consecutive
steps. To mimic this situation for the iterated maps, we
require that the iterations of the set {n} have to be injec-
tion steps into the laminar phase such that the first itera-
tion samples the same typical waiting time distribution as
all consecutive injection steps do. To achieve this re-
quirement numerically, we assume that the iteration steps
of the set {n} have to take place during the intermittent
burst and introduce the criterion [x,.;—x,|<l. To
check the effectiveness of this criterion, we calculated
Y(t), the probability distribution to stay in the laminar
phase, and compared the asymptotic behavior with that
of Eq. (5). If the average is taken over all iterations, the
length distribution of the initial laminar phase of a se-
quence of iterations would differ from that of the follow-
ing laminar phases and the process would correspond to
the stationary-state situation encountered in CTRW ap-
proaches [18]; here we concentrate on the case of the
nonstationary state.

Our analysis of the propagator is based on the space-
time memory function ¥(r,t), the probability distribution
to move a distance r in time ¢ in a single motion event.
Usually, in CTRW analyses the motion is considered to
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occur by means of jumps between sites where the particle
waits until the next jump takes place. In the velocity
model, the particle is assumed to move at a constant ve-
locity to a new location, where it chooses a new direction
at random.

In the analytical description, this requirement is real-
ized by means of the space-time-coupled memory func-
tion ¥(r,t)=218(|r| —1)y(z), where the & function ac-
counts for the constant velocity at which the particle
moves between points of halt and ¥(¢) is given by Eq. (5).
For simplicity, we consider dimensionless space and time
variables. It is straightforward to show that an
equivalent description of ¥(7,t) is possible by writing
W(r,t)=58(|r| —t)i(r), where (r) denotes the distance
distribution of a motion event. We adopt the latter
description for our further derivations and have

W, t)~8(|r|—1t)/|r|* . (7

Comparing Egs. (5) and (7), we may relate the two ex-
ponents u and z to each other: u=z/(z —1).

A closed-form expression is obtained for the propaga-
tor in the Fourier-Laplace (k, u) space:

P(k,u)=V(k,u)/[1—¢(k,u)] . (8)

Here, W(7,7) denotes the probability to pass at position r
at time ¢ in a single motion sojourn and is given by a cu-
mulative type of distribution:

W(r,t)~8(lrl—1t) 3 j 7M. 9)

izl

For the Fourier-Laplace transformation of ¥(7,¢) need-
ed in Eq. (8), we choose the representation

Yk, u)=L[(q)+¢(g)], (10)
with ¢ =u +ik and § =u — ik and with
dg)=A4 3 e TrH. (11)
r>0

Following the derivation in Ref. [8], we obtain for small g

1+c,g" ™', 1<u<2

$(g)~ {1—c,g+c,qg" !, 2<u<3 (12)

1—c,q +c2q2+c#q‘“1 s

3<u<4.

For integer subscripts, the constants are
¢;=8(u—j)/[j%(n)], while c,=T(1—pn)/Eu). Ap-
proximating the sum in Eq. (9) by an integral, we derive

1 1 _
W(k,u) 2q[1 ¢(q)]+2‘7[1 o(g)] . (13)

According to the findings for the mean-squared dis-
placement, we distinguish among three characteristic re-
gimes: ballistic type, intermediate enhanced, and regular
diffusion. These regimes are characterized by the three u
ranges in Eq. (12) and by the corresponding z values. For
the asymptotic long-time behavior of the propagator, we
obtain the following scaling representation:
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P(r,t)=f(&) /T, (14)
where £ is the scaling variable, §= |r| /7, and where
t, l<u<2
r= VD D 2<u<3 (15)
12 3<pu .

f(&) in Eq. (14) denotes the scaling function, which we
studied analytically and numerically. Here we present
only the main results. For the ballistic-type regime,
1<pu <2, f(§)is constant for small £ and diverges when &
approaches the value 1. This becomes obvious for the
particular case of pu=3, for which we obtained the
asymptotic expression

fEO=a"11-H"12, £51, p=3. (16)

It is in this regime where the results presented here devi-
ate qualitatively from those obtained for the jump model
with space-time-coupled memories [8].

For the intermediate enhanced and regular regimes,
2 <u <4, we observe a Gaussian behavior for small & fol-
lowed by a power-law wing:

exp(—c&?), £<1
fE)~ & #*, 1<§& and r<t (17
0, r>t.

For pu> 3, scaling is not obeyed for &> 1, but the decay
follows the same poer law, namely P(r,z)~t/r*. For
small-u values, P(r,t) tends to diverge for r—¢. In the
intermediate regime, 2 <pu < 3, the expression of P(r,?) is
similar to Lévy-stable distributions.

In Figs. 2-4 we compare the propagators obtained
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FIG. 2. The propagator in the ballistic-type regime, plotted
as tP(r,t). The upper curves are the results of the iterated map,
Eq. (6), for z=3 and for times ¢t =10, 10%, 10%, 10%, and 10°. The
lower curves indicate the numerical results of the propagator,
Eq. (8), for p=1.5 and for the same sequence of times, shifted
vertically by an order of magnitude. The broken lines give the
analytical asymptotic form, Eq. (16). The scaling variable is
E=r/t.
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FIG. 3. Same as in Fig. 2, here plotted is t>*P (r,?) for z=3
(upper curves), where the theoretical slope for large £ is indicat-
ed by a dashed line, and for p=2.5 (lower curves), where the
dashed lines give the analytical asymptotic forms, Eq. (17). The
scaling variable is £=r/t?/3 and the regime is that of enhanced
diffusion.

directly from the iterated maps, Eq. (6), with those ob-
tained from a numerical calculation of P(r,t), Eq. (8),
and with the asymptotic scaling forms, Egs. (15)-(17).
For the maps 10'° iterations were performed. The pa-
rameter € was set to 107° for u=1.5 and was set to zero
for £n=2.5 and 3.5. In Fig. 2 the map results are com-
pared with the analytic form, Eq. (16). In Figs. 3 and 4
the decay in the wings is compared with the theoretical
slope £7#. The data collapse for various times indicates
that scaling is obeyed.

The propagator of the velocity model was calculated
from a numerical Fourier-Laplace transform of Egs. (7)
and (9) followed by a numerical Fourier-Laplace inver-
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FIG. 4. Same as in Fig. 2, here t!/2P(r,t) is plotted for
z=1.4 (upper curves), where the theoretical slope for large & is
indicated by a dashed line and for p=3.5 (lower curves), where
the dashed lines give the Gaussian behavior for £ <1, Eq. (16)
and the power law ¢ /[2{(u—1)r*], t=10° for £> 1, respective-
ly. The scaling variable is £=r/t!/? and the regime is that of
regular diffusion.
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sion of Eq. (8). For short times, # <100, an exact
enumeration procedure was applied. Scaling is observed
in all cases except in the wing for p=3.5. The results are
presented in Figs. 2—4 and are close to those obtained
for the jump model in Ref. [8] except for the ballistic-type
case, u=1.5, where the results of the two models deviate
qualitatively.

In summary, we have studied the propagators obtained
from iterated maps in the enhanced-diffusion regime. We
have introduced the CTRW velocity model, which pro-
vides an analytical description of the enhanced-diffusion
process, and we have shown that this model offers an
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effective probabilistic means to describe anomalous
diffusion in deterministic systems.
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